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The steady-state distribution of charged particles in a weakly ionized plasma is examined for the case in
which volume ionization, recombination, and diffusion in a space-charge field occur. A joint solution is
obtained for the equation for charged-particle balance and the Poisson equations for the case of planar and
cylindrical plasma configurations satisfying the Schottky condition at the boundaries of the region. A
solution is also found for the case in which the ionization is localized in a spherically symmetric volume
and in which the Schottky condition is satisfied at infinity. The condition for the existence of a steady-
state solution is given and analyzed.

The steady-state distribution of charged particles in a weakly ionized plasma can be obtained for the balance
equations for the number of particles during volume ionization, recombination, and diffusion in a space-charge field.
The basic removal mechanism in a low-density plasma at sufficiently low particle densities is the independent
diffusion of electrons and ions toward the periphery, with subsequent recombination at the wall (free diffusion). It is
usually assumed that the ionization frequency per unit volume is proportional to the electron concentration. If the
mean free path is small in comparison with the typical dimension of the region under consideration, the problem
reduces to the linear diffusion equation with homogeneous boundary conditions.

For a dense plasma at high particle concentrations one must take into account several additional effects, of
which the most important are the effects of the electric field of the space charge and volume recombination;
accordingly, the problem becomes highly nonlinear. The divergence of the space-charge field is proportional to the
difference between the ion and the electron densities, and the simplest account of the effect of the space-charge field
is based on the assumption that the ratio C = NN, of the electron and ion densities is constant (C is some constant) at
all points in the region. If C =1, i.e., if the densities are equal, we find the familiar ambipolar-diffusion conditions.

If we denote the ion and electron diffusion coefficients by D,,D, respectively, we will have free diffusion when
Q= D+/D. The nonlinear problem for the transition from free diffusion to ambipolar diffusion was analyzed by Allis
and Rose [1] without an account of volume recombination. With regard to volume recombination, we note that in [2, 3]
the diffusion was assumed ambipolar everywhere in the volume; this is an important simplification of the problem. In
a region in which there are N, N positive and negative particles per cubic centimeter, the recombination of these
particles can be described by oN,N, where « is the radiation-recombination coefficient. During ambipolar diffusion,
the recombination term simplifies, becoming aNZ?. The recombination coefficient depends on the type of particles
participating in the recombination. However, by assigning a slightly different meaning to the coefficient «, we can
easily take into account volume ionization, stepped ionization, and several other processes occurring in a weakly
ionized plasma.

1. We make use of the continuity equation for the number of particles per unit volume and the Poisson equation.
Neglecting neutral-gas transfer and assuming the degree of ionization to be small (N/Nn<< 1), we have, for electrons
and ions,

¥ (Nv) —aNN, 4+ ZN =0 <v=-—D ylvl—b}a), (1.1)
— V(N,v,)—aNN, + ZN =0 (v+=—p+ VAZ,\:* + b,LE»), (1.2)
VE=4ne (N, — N). (1.3)

Here N and N,, the electron and ion densities, respectively, are functions of the coordinates; E is the electric field
of the space charge; and v and v, are the average drift velocities of electrons and ions. The volume~recombination
coefficient « and the frequency Z for electron-impact ionization, like the diffusion coefficients D, and D and
mobilities b and b, corresponding to electrons and ions, are assumed independent of the coordinates. This assumption
corresponds to the assumption of constant electron and ion temperatures T and T, throughout the volume. We
supplement system (1.1)—(1.3) by the Schottky boundary conditions:
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Nig=N,z=0. (1.4)

We note that analogous equations were discussed in [4] in an analysis of the plasma-perturbation region near an
electrode.

The problem will be treated below for the cases of planar, cylindrical, and spherical symmetry, so the
boundaries of the plasma region will be either two infinite parallel planes with coordinates 1/2 — L/2 or a cylindrical
or spherical surface of radius R. Here all the variables in (1.1)—(1.8) depend only on a single coordinate x; (i = 1,2, 3},
(x4 = x, %3 = p, X3 = r). Simple physical considerations based on the symmetry of the problem and the requirement that
the solution be bounded lead to the conditions

VN= YN, =0, VN, V2N, <0, E=0forz;=0. (1.5)

For sufficiently low densities N and N, all the nonlinear terms in (1.1) and (1.2) can be neglected, and we have,
instead of (1.1)—(1.3),

DN 4-ZN =0, D,\?N, +ZN=0, (1.6)

which are linear diffusion equations describing, with conditions (1.4) and (1.5), the well-known free~diffusion regime
in which volume recombination and the effect of the space~charge field can be neglected. The solution of Eq. (1.6) can
be written

N= NG, (), &=z, /A, A= (D /2",
where A is the diffusion length, and i =1, 2, 3 for planar, cylindrical, and spherical symmetry, respectively.
Equations {1.6) show that the ion concentration is related to the electron concentration by N, = D/D+N.

For i = 1 (planar symmetry), we have
M=L/a, G=cosz/As; {1.7)
for i = 2 (cylindrical symmetry), we have
Ar= Rip, Go= Jo(p/As), (1.8)
where y = 2.405 is the first root of the zero-order Bessel function; for i = 3 (spherical symmetry), we have
Ag=R/7,Gs =D (r]A) = Vahs/Zr Jo, (r/As) (1.9)

where & is the spherical Bessel function of zeroth order.

2. We write Egs. (1.1)—(1.3) in dimensionless form:
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where Ny, is the density of neutral atoms.

Eliminating ¢ from (2.1) and (2.2), we find with the help of (2.3) that

227



.) E
g
dnn(n, —n}+ E“l dg (@-x déz EI— S dbi P —ann, e =0, (2.4)
[i]
Maﬁi) d [ i~y dn R 1 1 dn
e (=) = dT( G ) ) A wan (2.5)
g
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We seek a solution of the nonlinear system (2.4}, (2.5) in the form
n= o)+ Gl — 5 2 pete, (2.6)
o= oy )+ By — ) 2 g (2.7)

Here, »ny; and n, are the dimensionless electron and ion densities atl the margin, &y = XiZ/ A;j is the value of &; at
the boundary of the region, and G;(¢;) satisfies Eq. (1.6), yielding Egs. (1.7)~(1.9) for i=1, 2, 3.

It is easy to see that the choice of substitution (2.8), (2.7) satisfies the boundary conditions of the problem. We
substitute (2.6) and (2.7) into (2.4) and (2.5), expanding G; in series form:

£ o2k
e A LA

where oz(i) are known coefficients corresponding at i = 1 to the power-series expansion of the cosine and corresponding
at i = 2 to the expansion of the zero-order Bessel function, etc.

Comparing coefficients of identical powers of §;, we find, in particular, for the zeroth-degree coefficients of £; .
the following:

dningy (ros; — ngi) — eongy — margingyq - aang =0, (2.8)

4nng, i (Roys — nog) + "l;" afj)ﬂm -+ W1 RoiRg, g — Waalgy = 0 . (2.9)

In an analogous manner, we can obtain recurrence relations for the coefficients Px and qi and (2.6), (2.7). In
particular, for i = 1 (point symmetry), we have (omitting the subscript for simplicity)
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Here,

Ap = 1Pny (qy_y — Pp-y) — 400, (Gpog — Pro) >
By =n®(no, — no) Pp_y — 41 (o, — no)Ppy »
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Ci = %y — 4ngy g, D= Ysr®py_y — Ppg -

For example, we have

12%ng (75, — o) — GifoNo,. _ 1250, (no, — no) -+ asnofto,
= 3 ag? v = Slaopn? ’
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It is easy to show that under free~diffusion qonditions‘, for which recombination and the effect of the space-
charge field can be neglected, the coefficients pk(I) and qk(l) tend toward zero, and the electron and ion density
distributions are given by the function

6, &) (=1279.

Let us now demonstrate the convergence of the series in (2.6), (2.7) for the case i = 1 (plane symmetry).
Analyzing recurrence relations (2.10) and (2.11), we can easily show that the inequality p, < 4n~2p, . becomes valid at
some k = ky; it follows that p,< (4n?)»1p, where p_ is some finite number. Accordingly, series (2.6) for k = k; is
majorized by a power series with the common term (477 f)n 20, having a convergence radius of n/2,

Series (2.8) thus converges absolutely in this region. The convergence of series (2.7) can be proved in an
anologous manner, as can the convergence of series (2.6) and (2.7) for i = 2, 3.

3. System (2.8), (2.9) for ny,;, ny is identical for alli{i= 1,2, 3);' i.e., it retains its form in different geometric
problems. The geometry is taken into account by the quantity A; in ao(l). Accordingly, the results obtained below from
an analysis of (2.8), (2.9) will be valid for any problem geometry.

Converting in (2.8), (2.9) from dimensionless to dimensional variables and parameters, and solving the system
for N(0) and N_(0) under the conditions

}L:Tb‘>1, o <& o9 = hreb | (3.1)
which are obviously always satisfied, we find
N, (0) Dy a 7 D Z
1———Z—ct— 7h% ——a—o Li—m][i—m]:ﬁ, (3.2)
N (0) p D Z -1 b.D 4 Db
o [0+ Falongl (pe2E) 5.8

where D, is the ambipolar diffusion coefficient. Equation (3.2) is the steady-state condition; it is equivalent to the
condition 8/8t = 0 which permits us to calculate the density in the central region from the diffusion length A for given
parameters z, «, D, Dy, b, by and for a given geometry of the plasma region. This geometry is reflected in the
steady-state condition. For certain ratios between the parameters in (3.2) and (3.3), particular forms of the steady-
state conditions can be obtained for the familiar "pure regimes".

For free diffusion, as an example, we have

_D N0 D, D Z
=ag Mo = for NMO<3xr. %
for ambipolar diffusion we have
, D D z ) Z
Za= Ai‘; , N@©O=nN,©0) for ToAE a SNOK— .

For the recombination regime, we have
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z D z
N(O):N+(0)=T for N>W, o

For the transition regimes from free diffusion to ambipolar diffusion and from ambipolar to recombination, Egs.
(3.2) and (3.3) must be used.

Significantly, the steady-state conditions unambiguously relate only the density at the origin with the parameters
of the problem; they are not directly connected to the form of the density distribution function, which can be calculated
from the recurrence relations. We turn now to conditions (3.1). As is easy to see from evaluations, these conditions
always hold for a plasma consisting of electrons and ions. According to evaluations based on known recombination
coefficients, conditions (3.1) must be satisfied for almost all known cases. However, if the opposite condition,

@S> ay = 4neb, (3.4)

is held possible which, generally speaking, may be true in the case of induced photorecombination in an intense
radiation field at high neutral-gas pressures, we can find a steady-state condition analogous to (3.4) from the
equations for n,_ and n in this case; i.e., the steady state must always be recombinational, regardless of the maximum
electron density.

4., We turn now to the analogous steady-state problem for the case in which the ionization is localized in a
certain effective volume and in which the boundaries are essentially at infinity. Localization of the ion can be
achieved by introducing a certain distribution parameter in Eqs. (1.1)—(1.3). For the spherically symmetric problem,
we introduce this factor by replacing Z by Z exp—(r/Ro)Z, where R is the characteristic dimension of the region in
which the ionization is localized. After calculations analogous to those in section 2, we find for this case a system of
equations similar to system (2.4), (2.5) for the bounded problem:

Co d . dn - 54 i . dn , .
4en (n, — n) + 7 ‘W N o ) + e §t (n,—n)dt _d'}]— — Cnn, +Cynexp —(M)=0, (4.1)
Co d { .d 4 d
B d (  dn,\ A, In, ! -
4an, (n,— n)— s (n an /—1— 5 ;zt (., — n)dt o + Cipnn, — uCyn exp (—n%)=0, (4.2)

where

r D o YA
n=g" C=gGmrrr =@ Oy

We seek a solution of (4.1), (4.2) satisfying the boundary conditions

n+/f.-—-oo = n/ﬂ—mo =0
and the condition of boundedness at the origin, in the form

n= e (kD ), n, = (B, D) gnks) (4.3)
=0

=0

Here ng, ng are the dimensionless electron and ion densities at the origin. Substitution of (4.3) into (4.1) and (4.2),
with a power-series expansion of exp (-7, yields equations analogous to (2.8) and (2.9) for the bounded problem for

the density at the origin:

4atng (no, — m) — Cong — Cungno, 4 Cong =0, (4.4)
4gtng, (ro, — ro) 4 W/ACanae, -+ RCinono, — uCang =0 . (4.5)

Recurrence relations for the coefficients and g in (4.3) can be obtained in a completely analogous manner.
Because of the similarity of (4.4), (4.5) and (2.8), (2.9), and when conditions in {3.1) hold, we can obtain from (4.4)
and (4.5) steady-state conditions analogous to (3.2) and (3.3); a difference is that here the role of the diffusion length

is played by the quantity
A=Y R. (4.6)

The numerical coefficient in (4.6) is directly related to the approximation chosen for the ionization-frequency
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distribution.

All the results obtained in the study of steady-state regimes for the bounded balance problem naturally remain
valid for this case, with the replacement of Aj by A,.
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